

Unistat[®] 930w

Thermal shock protection shown on a Diehm 100-litre reactor

Requirement

This case study is designed to show the function of ' Δ T limit' in the controller and how it protects glass reactors against thermal shock. This Diehm glass reactor does not have a manufactures Δ T limit at all. We could see in our tests > 150 K Δ T.

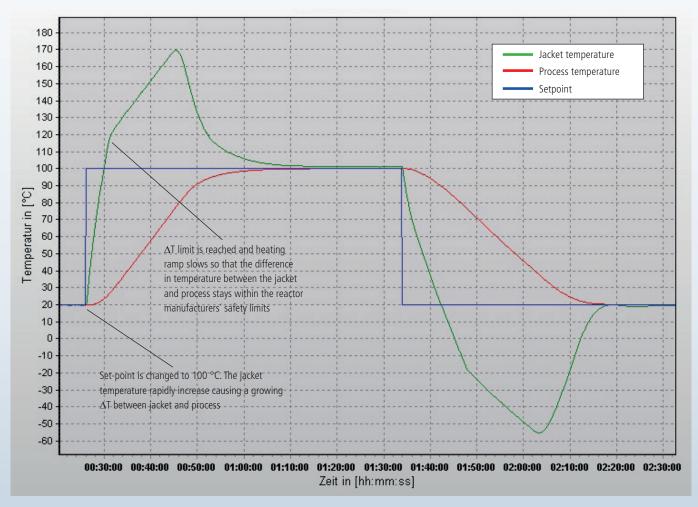
Method

The Unistat and reactor are connected using two 1.5-metre insulated metal hoses. The reactor is filled with 75 litre of "M90.055.03", a Huber supplied silicon based HTF.

Results

A standard user defined feature in the Unistats is the " Δ T limit" which limits the difference in temperature between the process and reactor jacket. It is set by the user to a value recommended by the reactor manufacturer. The default setting is 100 K.

The process temperature ramps at a rate of 3.53 K/min. and reaches the set-point in 47 minutes. Meanwhile the cooling ramps at a rate of 2.3 K/min. and takes 53 minutes to reach 20 °C.


Throughout the whole process the reactor is protected.

Setup details

Unistat® 930w & Diehm reactor

Temperature range:	-90200 °C
Cooling power:	19 kW @ 200100 °C
514	20 kW @ 040 °C
Heating power:	24 kW
Hoses:	2x1.5 m; M38x1.5
	(#6656)
HTF:	DW-Therm (#6479)
Reactor:	100-litre un-insulated
	glass reactor
	VPC Bypass installed
Reactor content:	75 litre M90.055.03
	(#6259)
Stirrer speed:	400 rpm
Control:	process

