

Unistat 430

Unistat 430 cycling a 20-liter glass jacketed reactor

Requirement

This case study determines the lowest achievable process temperature and the ability of the Unistat 430 to control the process temperature when it is connected with an 20-liter Büchi Glas Üster jacketed reactor.

Method

The 20-liter Büchi Glas Üster jacketed reactor was connected to Unistat 430 using metal insulated hoses M24. The thermofluid used in the system was "DW-Therm". "Process" control was carried out via a Pt100 sensor located in the process mass. Stirrer speed was set to 100 rpm.

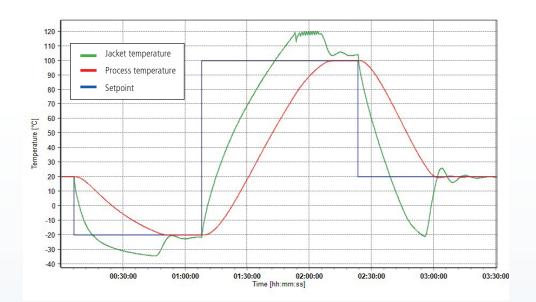
Setup details

Temperature range:	-40°C+250°C
Cooling power:	3.5 kW @ +20°C
	3.5 kW @ 0°C
	2.2 kW @ -20°C
Heating power:	4 kW
Hoses:	metal insulated M24
HTF:	DW-Therm
Reactor:	20 l Büchi jacketed
	reactor
Reactor content:	15 I DW-Therm
Stirrer speed:	100 rpm
Control:	process
Amb. temperature:	+24°C

Results

1. Lowest achievable temperature (Tmin):

As the graphic shows that the minimum achievable process temperature was -37.6°C.



2. Performance:

The table and the graphic shows the speed and stability of control as each new set-point is reached.

Start T	End T	Approximate time	Av. Ramp Rate
+20°C	-20°C	43 minutes	0.9 K/min
-20°C	+100°C	80 minutes	1.5 K/min
+100°C	+20°C	37 minutes	2.2 K/min

