

Ministat ${ }^{\circledR} 240$

Ministat ${ }^{\circledR} 240$ cycling a 5-litres glass vacuum insulated reactor

Requirement

This Case Study demonstrates the temperature control capabilities of the process temperature and also the minimum achievable process temperature when a Ministat 240 is connected with a 5-liter Asahi glass vacuum insulated reactor.

Method

The 5 -litres Asahi glass vacuum insulated reactor was connected to Ministat ${ }^{\circledR} 240$ using 1-meter metal insulated hoses. The thermofluid used in the system was "M60.115/200.05" "Process" control was carried out via a Pt100 sensor located in the "process" mass. Stirrer speed was set to 150 rpm .

Setup details

Temperature range: $-45^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$ Cooling power: $\quad 0.60 \mathrm{~kW} @+20^{\circ} \mathrm{C}$ 0.55 kW @ $0^{\circ} \mathrm{C}$ 0.35 kW @ - $20^{\circ} \mathrm{C}$

Heating power: $\quad 2.0 \mathrm{~kW}$
Hoses: $\quad 2 * 1 \mathrm{~m}$ metal insulated
HTF:
Reactor:

Reactor content:
Stirrer speed:
Control:
M60.115/200.05
Asahi 5-litres glass
vacuum insulated
4 I M60.115/200.05
150 rpm
process
Amb. temperature: $+25^{\circ} \mathrm{C}$

Results

1. Performance:

The graphic shows the tight and rapid control as the Ministat 240 ramps to each new set-point. The Ministat ${ }^{\circledR} 240$ needs 57 minutes to cool down the reactor from $+20^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, then 52 minutes to heat up the reactor from $-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and 64 minutes to cool down the reactor from $+100^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$.

Case Study CS 1249

2. Lowest achievable temperature (Tmin):

Once stable at $+20^{\circ} \mathrm{C}$ under the "Process" control, a set point of $-40^{\circ} \mathrm{C}$ is entered. The graphic shows that the lowest temperature achieved in a 1 -liter Chemglass jacketed reactor was $-29.6^{\circ} \mathrm{C}$.

