

Setup details

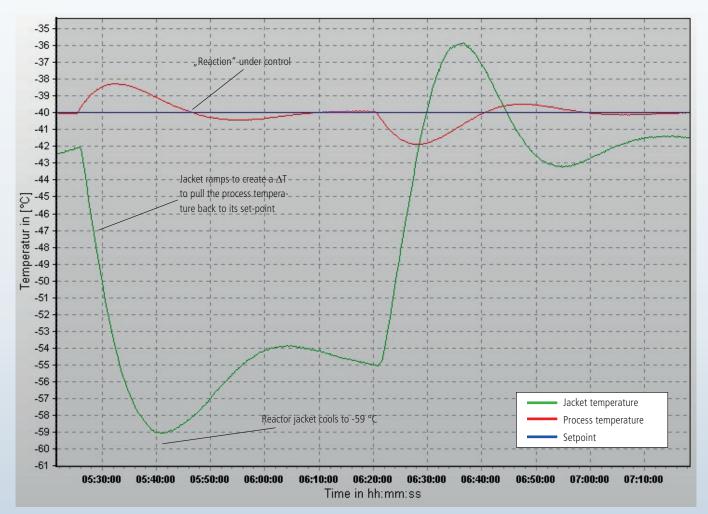
Unistat® 830 & Buchi Glas Uster reactor

-85200 °C
3.6 kW @ 0 °C
2.2 kW @ -60 °C
3.6 @ 0 °C
3.5 @ -2040 °C
2.2 @ -60 °C
0.7 @ -80 °C
3 kW
2x1.5 m; M38x1.5 (#6656)
DW-Therm (#6479)
20-litre jacketed glass
reactor
15 litre M90.055.03
(#6259)
70 rpm
process

Unistat[®] 830

Controlling a simulated 150 W (129 kcal/hr) exothermic reaction in a Buchi Glas Uster 20-litre jacketed glass reactor at -40 °C

Requirement


This case study looks at the performance of a Unistat 830 as it controls a 150 W (129 kcal / hr) in a Buchi Glas Uster 20-litre jacketed glass reactor. The reaction is carried out at -40 °C.

Method

The Unistat and reactor are connected using two 1.5-metre insulated metal hoses. The reactor is filled with 15 litre of "M90.055.03", a Huber supplied silicon based HTF. The exothermic reactions are simulated using a controlled electric immersion heater.

Results

The "exotherm" is started by turning on the heater and causes a rise in process temperature peaking at approximately -38.2 °C. The jacket temperature rapidly cools through 17 K to -59 °C and quickly returns the process to and controls it at the set-point of -40 °C. Once the heater is turned "Off", the process cools but again, the swift response of the jacket minimises the under-shoot and the process is returned to its set-point.

