

Setup details

Unistat[®] 510w & DDPS reactor

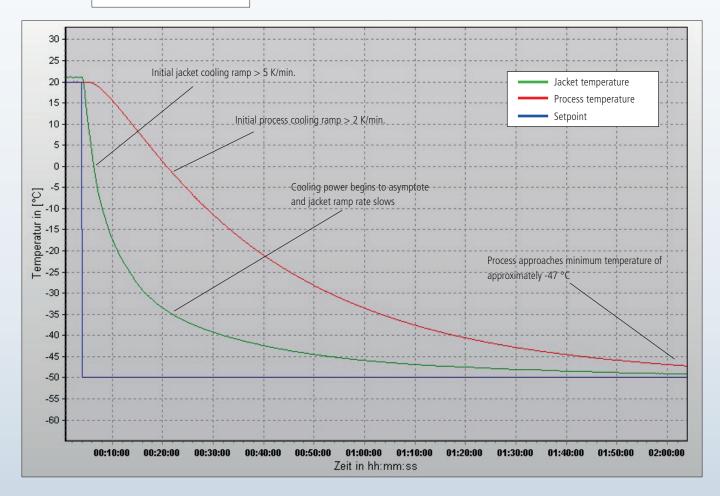
Temperature range:	-50250 °C
Cooling power:	5.3 kW @ 2500 °C
	2.8 kW @ -20 °C
	0.9 kW @ -40 °C
Heating power:	6.0 kW
Hoses:	2x1.5 m; M38x1.5
	(#6656)
HTF:	DW-Therm (#6479)
Reactor:	DDPS 25-litre vacuum
	insulated glass reactor
Reactor content:	18.75 litre M90.055.03
	(#6259)
Stirrer speed:	80 rpm
Control:	process

Unistat[®] 510w

Cooling a 25-litre DDPS reactor to Tmin

Requirement

This case study examines the minimum temperature that a Unistat 510w can take the process temperature contained in a 25-litre vacuum-insulated glass reactor.


Method

The DDPS reactor was connected to the Unistat 510w using two 1.5 m insulated metal hoses. The reactor was filled with 18.75 litre of "M90.055.03", a silicon based Huber supplied HTF.

Results

The initial ramp rate is very rapid but as the cooling begins to asymptote at around -25 °C (jacket temperature) the ramp rate begins to slow.

The final temperature is -49 °C in the jacket and approximately -47 °C in the process.

